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AEHOTIU~X-B pa60Te npegnaraeTcH meTon perrreHuR HecTaqroHapHbIx nKKeiHbnt sap(an 
nepeKoca~ npe~nonomeKKK,YTo~3aecTHope~eKKe3~aYKooepe~oceKlrrnynbca~n~neorpa- 
HKYeHHOrO IIpOCTpaHCTBa. PaccnsaTpKBaIoTw pa3nKYabze Kpaeabie 3aAass.f gns ~uupo~oro 

Knacca 06nacTe~,COCTaBn~eTC~ II CTpOUTCFI KHTerpanbHoe ypaaHeKKe, pe~eHKeM HOTOpOrO 
fiBHReTCR @yHKnKrr BnHRHHfi finfi EaKKoz1 06naCTK IIpIl ~Ka6aTKYecKE aa~3onKpoaaKKo~ 

rpaanne. B pa6oTe noKa3aK0, 9~0 nocTpoeKnoe IiHTerpanbKoe ypaweawe MomeT 6nTb 
peJ.LleHO MeTOAOM IlOCneAOBaTeJIbHblX npa6nameKKB, HCCJIeAOBaHa 6nCTpOTa CXO~IIYOCTII. 
KpoMe Tore, noKaaaK0, YTO 9neKbI prrna nocneAoBaTenbHnx npw6nameKK# AOnyCKalOT 
BeCbMa SfCHyZO kf HarnRAHyH, QtM3KYeCKyIO HHTepIIpeTa~HIO, IIO3BOnRIolI&yIo KCTOnKOBaTb 

npoaecc nepeeoca. 
~OCTpOeHKe +yHKI@ikfH BnIRWWIf AaeT BO3~O~HOCTb yKa3aTb B CaQlOW o6IyeM BHAe MeTOz 

peruewia nepBofi KpaeBoR sanarla. JJJIR aTor c riOMoIIfbI0 @y~Kqau Bnsifwwi ~n5i AaHKof4 
06nacTH CTPOHTCR HOBOe KKTerpanbKoe ypaBKeKKe AnR. OTbICKaHUJl TennOBOrO IIOTOKB, 

ocy~ecTsnmorqer0 npoqecc nepeHoca npki 3waKKbIx rpaKnYKbIx ycnosuflx 3aAaYw. 3~0 
KKTerpanbKoe ypaBKeKKe BHoab peluaeTca nfeToAord nocneAoBaTenbHbrx npa6nKmenr?n, 

TaKzKe Ao~ycKa~~~x~ecb~a Kar~~Ky~ ~K3K~ecKy~ Tpa~oBKy. 
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NOMENCLATURE 

thermaldiffusivity coefficient; 

diffusion rate; 

specific heat ; 
region ; 
initial temperature; 
function of sources ; 
temperature field, Green func- 
tion for region D ; 
heat content ; 
= cy; 
Laplace transformation ; 

L, M, N, 0, P, Q, points ; 
n = 1,2,3, reflection number; 
p, differential operator ; 

41 heat flux ; 
?‘t radius-vector length /QPj ; 
R space ; 
s, boundary surface of the region D ; 
4 time ; 

T, temperature ; 

7 y, 2, co-ordinates. 

Greek symbols 
a, heat-transfer coefficient ; 

F, 
specific weight ; 
Green function for whole space; 

4 delta-function; 
4 Laplace operator ; 

-% emissivity ; 

t, time moment ; 

?L co-ordinate ; 

PY q,, 8, spherical co-ordinates ; 

4 heat conductivity; 
v, external normal ; 

5 time moment ; 

23 tem~rature of body surface ; 
rp(6, cp, Ad), dissipation function. 

1. RECENTLY a number of works have appeared 
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in which a diffusion (heat-conduction) equation 
is stated to include the effect of the finite diffusion 
rate of a substance or energy carrier, e.g. the 
papers by Fock [I] dealing with one-dimen- 
sional diffusion of a light beam, by Davydov [2], 
Lyapin [3] and Monin [4] on turbulent dif- 
fusion, by Kramer and Chandrasekhar (see 
reference [6]) who thoroughly analysed the 
Focker-Planck difference equation describing 
the probability of the presence of a particle in 
Brownian motion at the point x’ and time 
instant t, by Goldstein [5] who solved the 
problem of random motion of particles which 
lost their “memory” (i.e. particles which are in 
Markovian process), by Davies [6], Vernotte 
[7], Cattaneo [8] and others. 

In these works a hyperbolic equation, the 
so-called telegraph equation, is obtained by 
different ways for the unsteady-state diffusion 
(heat conduction) process. The equation differs 
from an ordinary parabolic one by the presence 
of the term l/c2 i32T/dt2 and is the result of a 
more profound analysis of the phenomenon. 
In the above term c is the diffusion rate. It has 
been proved that the classical approximation 
is not applicable to a number of problems, 
namely to those in which the diffusion rate 
cannot be assumed infinite or the mean free 
path of particles negligibly small. 

Analysis of the Boltzmann equation [9] 
shows that a similar pattern exists for example 
in metals at high temperature gradients. In this 
case there is no classical relationship between 
heat flux and gradient. In particular, infinite 
gradients do not cause infinite fluxes, which in 
reference [9] is referred to as paradox in heat 
conduction. It means that the basic solution of a 
heat-conduction equation for short time inter- 
vals (in the region of large gradients) does not 
correspond to the true temperature field. 

In reference [6] the basic solution (for the 
whole space) of the telegraph equation is given 
and it is proved that for long time intervals it 
asymptotically approaches the basic solution 
of the heat-conduction equation (of parabolic 

type). 

The influence function for two- and three- 
dimensional space is given in reference [lo]. 
In the latter case the function is of the form 

r(Q, 8, t) = c/r e-*‘@’ 

a20 
i 

(S(ct - r) 

+ 2Jr2 - c2t2 

x J, [$a2cJr2 - c2t2] u(ct - r) 
> 

, 

where a2 is the thermal diffusivity coefficient, 
c is the diffusion rate (or the rate of thermal 
excitation transfer), r = jQY\, J, is the Bessel 
function and 

u(r) = 
i 

0 at y<O 
1 at q>O 

when 

c -+ m, r(Q,P,t) 
1 

+ (2aJ7ct)3 
exp [ - r2/4a2t]. 

This paper presents the construction of the 
general solution of a wide range of transient 
non-linear transfer problems, with any initial 
and boundary conditions, on the basis of both 
the function of the source in the form of unit 
pulse, determined over the whole space R and 
obtained analytically or by the data of one 
fundamental experiment, and the superposition 
method which gives rise to no doubts as far 
as low-temperature fields are considered. It 
does not resort to any additional suppositions 
on the character of the heat-conduction and 
diffusion processes. 

This method, called an integral one, allows 
for both the inertness of the process and the 
velocity of heat or substance propagation and 
includes, as a particular case, the solution of the 
same problem based on the Fourier hypothesis, 
thus being more extensive than the one based 
on the solution of some differential equation. 
Henceforth the transfer process is referred to as 
heat conduction, and talk of heat propagation. 

The most general heat-conduction problem 
is stated as follows: Find the temperature field 
in the region D (which, in general, is not singly- 
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connected) if it has some initial temperature 
distribution T(B, t$=e and heat is liberated at 
each point of the region with intensity F(9, t). 
We know the temperature of the body surface 
cp(S, t) (the boundary condition of the first kind) 
or the value of the heat flux on the boundary S 
of the body q(S, t) (the boundary condition of 
the second kind), or alternatively the heat 
transfer law and ambient temperature are 
given, e.g. Newton’s law of cooling q = ~(7”~ 
- &,,,,J (the boundary conditions of the third 
kind). In addition, boundary conditions of the 
fourth kind may be given for the surface S. 
This is the so-called contact heat conduction, 
when the region D is in contact (i.e. has a 
common boundary) with another region D* of 
definite physical properties. A close contact 
provides continuity of the temperature field at 
a contact point. By the heat conservation law, 
the flux to the region D is the flux to D* with 
an opposite sign. 

2. Let D be a convex region with the boundary 
S. The problem is to estimate the temperature 
field G(Q, 9, t) at point 9 and time t, when a unit 
amount of heat is liberated instantaneously at 
some point Q of the region at t = 0, and the 
surface is thermally insulated. In solving this 
problem, the principle of superposition is 
supposed to be valid and the influence function 
r(Q, 9, t) is considered known for the whole 
space R(Q, 9’~ R). First of all consider the 
following problem: at t = 0 a unit heat pulse is 
liberated at point Q of three-dimensional space 
R. Let us encircle the point Q by a closed convex 
surface S which does not obstruct heat propaga- 
tion. Find the heat flux q(Q, M, t) at point M of 
the surface in the direction of the external normal 
v. Consider the sphere Sz with the radius z = 
(QMI and point Q as centre. The heat flux qn 
through its surface, being directed out of Q, is 
equal to the time derivative of the enthalpy in 
the region R - 52. 

q&Q, M> t) = & JJJ WQ, 9, t) d9 
R-R 

where k is the product of the specific heat by 
the specific weight. Owing to the isotropy of the 
space both the heat flux and the temperature 
field r(Q, 9, t) possess spherical symmetry rela- 
tive to the point where the heat pulse appears. 
This means that on the sphere with the point Q 
as the centre the flux q1 does not change its 
scalar value. q* is a flux through a point on the 
sphere in the direction of r = IQslj. Therefore 

qn = J.fq,. dS* = 4,. 4nr2 
and 

m 

qt.=+ 
aa t) 

P2- 
at dp. 

r=jQMI 

Let dQ, be the heat flux through the element 
dSn of the spherical surface for the time dt : 

dQ, = ad& dt, 

and dQ, is the heat flux through the element dS 
of an arbitrary surface S : 

dQ2 = qv dS dt. 

d& and dS are in the vicinity of the point M. 
Using dQ, = dQ2 and dS = dS,/cos (r, v) one 
obtains qr = qr cos (r, v). Then 

a, 

q, = k 
cos (r, v) 

rz s 

WP, t) 
P2 ___ 

at dp. 
r=lQM/ 

But 

a 
at kl-‘dV = -& kT dV. 

R-R R 

With this in mind one can write qv in the form 

qv = -k%$d 
r=JQM( 

s am t) 
P2 ~ at dP. (1) 

0 

In case of two-dimensional space 

qy = _k ~0s (r, 4 p an-+ t) 
r at dp. 

0 
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It is not difficult to show that the function 
q(Q, M, t) is a continuous variable of Q and M for 
t > 0. Moreover it will be shown later that qv is 
singular at r + 0 and t -+ 0. The amount of heat 
through S for the time t is equal to 

6 dz jsj qv dS. 

It is also the difference between the enthalpy of 
the region R - D at the time moment t and that 
at the initial moment. Thus 

d dz js j qv(Q, M> 4 dM = 

s,! 1 WQ, 9, t) @’ = 

1 - j f j WQ, 9, t) d9 (2) 
D 

Hence 

$ dr !sj qv dS < 1 (31 

for any point Q E D and for all finite t. Note that 
qv is a positive function for convex regions since 
q, > 0 and cos (r, v) > 0 for such regions. 

Let us suppose now that the boundary S of the 
region D is mobile, and the region D at all 
t E (0, to) is convex. It is also supposed that the 
motion of the boundary S does not disturb the 
heat conduction process in R, i.e. S is “trans- 
parent” for heat. The change of heat content in 
the region D is provided both by heat conduction 
and by displacement of the boundary. So that 

2% R 

aJ(Q, t) 
p=k dq at s s 

sin e de 

0 0 
*o(s,e*e 

c 
P2 

am 4 r~, t) 
at dP 

0” 
2n n 

+k dq 
s s 

sin 8. r;(e, cp, t) . r&9, cp, t) 

0 0 

x Co(e, cp, t), 8, cp, t] d&t 

t Since in general the origin of co-ordinates does not 
coincide with the point of heat pulse onset, r(Q, 8, t) is not a 
spherically symmetrical function relative to the point 0 but 
depends also on 8 and q(p = 1091). 

where rb(& CP, t) = (OM(tll, 

rb@, cp, t) = 
dr,(e, cp, t) 

dt 

and the point 0 is the origin of co-ordinates. 
The first summand describes the change of 
enthalpy by heat conduction, the second one 
that due to the change of the region D itself. 
In this case therefore 

qY(Q, M, t) = _k 'OS b-(t), '@)I 

IIrWl’ 
w 

X s am t) 
at p2 dp - k ~0s [ro@), v(t)] (41 

0 

rlW[Q, M(t), t] 

where r(t) = IQM(t)l. If the moment r of the 
origin of the heat pulse does not coincide with 
the time origin (0 < r < t), then 

ar(p, t - 5) 
at 

and r[Q, M(t), t - z] should be substituted for 

ar(0, t) 
at 

and r[Q, M(t), t] respectively in the expression 
for qy. 

3. The principle of superposition, as can be 
easily shown, makes it possible to write the 
solution of the general heat conduction problem 
for boundary conditions of the second kind 
directly, if the influence function G is known for 
a given region. For example, when TI f = o = f(P), 
the heat flux on the surface equals q(M, t) and 
the function F(P’, t) of the source acting in D is 
given, the temperature T(9, t) can be found 
from the expression 

W’, 0 = k ! 1 ! f(QMQ,g, t) dQ 
D 

+ ; dr j j q(M, z) . G(M, 8, t - z) dM 
0 S 

+ j do s j 1 F(Q,@*G(Q,9,t-ddQ. (5) 
0 D 
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Here the influence of the initial conditions on 
the temperature field is written for the case when 
these conditions are specified by a given field 
function at an initial instant in time. For trans- 
fer problems with initial conditions not com- 
pletely defined by this function alone, the effect 
of the initial conditions will, of course, be dif- 
ferent. If, for instance, the transfer process de- 
scribed by the hyperbolic equation is discussed, 
then it is necessary to add terms to the right- 
hand side of the expression 

WQ, P, 
+ f(Q) at 

t) 1 dQ. 

The expression for the effect of the boundary 
conditions and inner sources is unchanged. 
Therefore the basic statements and conclusions 
of the assumed method are valid in this case. 

Thus determination of the function G is the 
primary problem in the study of heat conduction. 

By considering the mechanism of heat (mass) 
transfer one can conclude that the original heat 
pulse is propagating in the region D in the same 

on the elements of the boundary da at the mo- 
ment 5 for the time d& (M, N E S ; z < < < t). 
This result of the first reflection effect on the 
boundary elements is called the second reflection, 
etc. The task is to describe the process as an 
infinte series of reflections allowing for the con- 
dition of absolute “opacity” for heat of the 
boundary S and to prove its convergence. Let 
us find, for example, the contribution of the 
second reflections (the third term of the series) 
to the temperature field G. For this purpose 
multiply the value of the second reflection by the 
influence function for the whole space 

and integrate along the surface by the variable 
N and time r, changing from r to t. This means 
that for the time t - z the first reflection leaves 
heat charges at any point N of the surface. Then 

changing from 0 to t. This means that the first 
reflections, which give rise to the second ones and 
the infleunce of which is being allowed for now, 
appear at any point M of the surface for the time 
t. Consequently, the appropriate addition is of 
the form 

j dr j-j %(Q, M, 4 dM j d5 \i q&M, N, 5 - 4. UN, 8, t - 5) dN, 
T 

and the unknown series is 

G(Q, 8, t) = r(Q, 9, t) + i dr fs q,(& M, 4. T(M, 9, t - r) dM 
0 s 

+ jd~S44,(Q,M,t)dMjdrSSq,(M,N,t - z).T(NAt - r)dN + . . . . (6) 0 s r s 

way as in the whole space. Due to the superposi- 
tion of heat insulation upon the boundary, this 
pulse leaves a heat charge q”(Q, M, r)dS dz, 
being called the first reflection in this paper, on 
each element dS of the surface for the time dr. 
This charge will, in its turn, propagate by the 
principle of independence of action as it does in 
the space R, leaving the charge 

Note that the reflection series is very similar to 
the solution of an integral equation with the 
kernel qy, which has been obtained by the method 
of successive approximations. The integral equa- 
tion can be constructed, based on the fact that 
the effect of the adiabatically insulated boundary 
(heat barrier) will result in the “reflection” of 
the flux q&Q, M, T) into the region D. Otherwise, 
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the function G is the result of the superposition 
of heat sources with the intensity q,,) distributed 
along S plus the source function for an infinite 
space 

x G(M, 9, t - z) dM + r(Q, 9, t) 

or 

G(Q, PP,O = i dz j j qv(Q, M, t - 7) 

x’G(M, ii, 7) dM + r(Q, 9, t). (7) 

In a particular case when r and G are Green 
functions of the heat conduction equation with 
boundary conditions of the second kind for the 
whole space and the region D respectively, then 
equation (7) is directly obtained by applying the 
Green formula to r and G with subsequent 
integration from 0 to t. In this case according to 
the Fourier hypothesis it should be supposed that 

qv = -/.E 
ai 

Equation (7) has a unique solution which can 
be found by the method of successive approxima- 
tions when supposing cpo = r(Q, 9, t). 

cp,(Q,~>t) 

= 5 dz jj qv(Q, M, t - r)cp,_ ,(M, 9, z) dM, 
0 s 

Then 

G = cpo + ‘pl + (p2 + . . + qn + . . . (8) 

Let us prove the uniform convergence of series 
(8) of which the terms are all positive functions. 
We have 

cp,= id7 j!qvqn-ldS. 
0 S 

But v,_~(Q, 9, t) is the finite function in the 
interval 0 6 t 6 co at n 2 2 since the required 
type of singularity for G at the point 9 = Q and 
t = 0 (at this point it is a delta-function) is pro- 
vided by the zeroth approximation ‘po. Conse- 
quently, (P”_ 1 d A. Then (P,, < A x b where 

b = max j dz. 1 { q, dS < 1 
0 s 

[see (3)]. Applying these estimates to all terms 
of series (8) we shall get a-numerical series which 
is a geometrical progression with the denomi- 
nator b < 1. This series being a majorant for the 
functional series (8) converges. Thus series (8) 
converges uniformly in the interval 0 < f < a. 
The identity of the terms in series (8) and (6) can 
be easily shown after the appropriate substitu- 
tion of variables. 

Let us show that in this the condition of heat 
conservation is obeyed, i.e. 

k 1 s, j G(Q, 9, t) d9 = 1 (Q E D). 

Integrate both sides of equation (7) with respect 
to D 

On supposing this condition to be obeyed we 
come to equality (2) proved above. But the 
integral equation has a unique solution. Thus 
the integral 

which is equal to 1 is defined unambiguously. 
4. By the methods indicated in paragraphs 2 

and 3 one can find the function G(Q, 8, t, z) for 
the region within the moving boundary. In this 
case the problem is stated as follows. There 
appears a heat pulse of unit intensity at some 
point Q of the region D of variable volume (mass) 
at the moment z. The gain of mass (the case of 
expansion of the region D is considered) has a 
zero excess temperature. The boundary is heat 
insulated. Find G(Q, 9, t, 7). This problem is 
characterized by the presence of a moving boun- 
dary and, hence, by the fact that the temperature 
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field depends not on the difference t - 7 but 
on t and 7, since not only the time of action 
t - 7 but also the moment 7 of pulse onset is 
important. 

It should be noted that if the body volume is 
decreasing steadily and 

lcos [ro(t), a(t)lrb(& cp? t)( > c 

(the heat propagation velocity) for all 0 < cp < 
2150 < 0 < 7~ and 7 < (f < t,, then the tempera- 
ture Field G(Q, 9, t, 7) will be r(Q,P, t - z) since 
the “reflection” flux is excluded together with 
mass adjacent to the surface. In this case the 
condition that flux on the boundary equals zero 
is not obeyed. To obey this condition it is neces- 
sary to consider the “vanishing” mass as having 
zero temperature. In this case the solution to the 
problem is similar to the solution of the problem 
of an expanding region, which will be discussed 
below. 

Let us determine r(Q, 9, 5 - 7) on a newly 
appearing bed of the substance, each time re- 
presenting its zero temperature as 

r[Q, M(t), i_" - 71 - r[Q, M(i-), 5 - 71. 

Thus the first reflection on the element dS for 
the time d5 will be the sum of heat, which should 
pass through dS for the time d[ due to the 
heat conduction according to the proper scheme 
of the problem for the space R (the model is 
meant of the region expanding in the infinite 
space of which the temperature field is 

r(Q, 995 - 7) 

and the region itself does not disturb the process 
of heat conduction in R), and the enthalpy of 
substance bed, which has appeared on dS for 
the time dr at the moment 5 due to the motion of 
the boundary S(5) at the temperature 

{ -r[Q, M(g), 5 - 711. 

Therefore, the reflection flux is (4). Now without 
determination of the reflections of the 1,2,. . .nth 
order or their effects on the temperature field in 
D, we shall directly write an integral equation 
proceeding from the fact that in this problem 

G(Q, 9, t, 7) should be considered as the result 
of superpositions of heat sources with unit 
intensity qv, which are placed on S and move to- 
gether with S, plus the function r for the whole 
space. 

G(Q, 9, t, 7) = j d s j qJQ, M(t), 72 tl 

x G[M(SW,;,5]:&5) + r(Q,P,t - ~1. (9) 

The relation 

holds for qv. After integrating it with respect to 
< from 7 to t we obtain 

l- k j&J r(Q,p', t - 4@'. (10) 

Therefore 

j d5 Iti qY[Q, M(5), 7, tl dW5) < 1. I 
Using these results it is not difficult to estab- 

lish the convergence of the series of successive 
approximations for equation (9) in the same way 
as was done for equation (7). It should be taken 
into account that cpl, (pZ, . . . tpn are continuous 
functions everywhere in D(t) which tend uni- 
formly to zero at t + 7, since the required singu- 
larity can be provided for G at 9 = Q and t = z 
by the zero approximation cp,, = r(Q, 9, t - 7). 

Further, the following considerations make this 
convergence evident. If the heat pulse appears 
simultaneously both in a body with a fixed 
boundary and in a similar body with moving 
surface, which extends its volume, then in the 
second case the influence function will be less 
than in the first one since heat diffuses into a 
larger volume. But for the first problem the con- 
vergence of the series is proved, therefore it will 
be valid for the second case as well, as the series 
of successive approximations can be visually 
explained by the “reflection” theory. 
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The fullilment of the condition of heat conser- 
vation can be proved possible by the well- 
known method. Integrate both sides of the 
equation by D(t) 

jhj,s WQ,p, t, 5)dp = 1 CQ dt)l 

we get true equality (10). But integral equation 
(9) has a unique solution, therefore 

f&j WQ, 8, t, 5) dp = 1 (7 d 5 G t). 

Let us consider in more detail how to obtain 
the solution of equation (9) by the method of 
successive approximations. The problem is 
solved in the spherical system of co-ordinates. On 
the moving surface the point M(c) has co- 
ordinates r,(8, cp, <), 0 and cp. The surface ele- 
ment in spherical co-ordinates can be written 
as 

Wt) = 
rg(d, cp, 5) sin 8 de dq 

cos [r*(& v(t)] 

to the accuracy of infinitesimals of a higher order 
of magnitude. Therefore, on determining qy from 
formula (4) we have 

qy = CL[Q(P~, dl, CPA rd& cp, 5Lt cp, z, <I. 
Now it is clear how to find cp,(Q, 8, t, r) using 
the recurrent formula. To do this, in 

rp,- dQ,p', 4 r) 

we should substitute Q(p,, el, cpi) by 

M[r,(R cp, 5),& cpl, 
z by 5, multiply by 

x r@, cp, 5) sin 8 d% dp d5 

cos [ro(O ~(01 
and integrate by cp(0 < cp < 2n), 0(0 G 0 d x), 
and t(r < < < t). The problem can also be 
solved in another system of co-ordinates. 

The moving surface will have covered the 
volume D(t) - D(r) bounded by two surfaces 
S(r) and S(t) by the time t, therefore one can 
determine the reflection series in another way by 
integrating over the volume 

[ sin 8 d8 [dg r”(R~‘f’ . . . p2 dp. 
ro(~. o,r1 

In this it should be taken into account that 5, 
the time of rise of the reflected pulse at a 
point of the internal volume, depends on the co- 
ordinates of this point p, 0, cp and is determined 
from the relation 

Then 9, = dQh by CPA P, 4 cp, 7, <(P, 4 @I 
and to obtain the nth approximation, it is neces- 
sary in the (n - 1)th one to substitute p, 8, cp for 

Qh ol, (PJ; ~XP, 0, cp) for z; multipb by 
dQ(h el, cpd P, 0, cp, 7, 8~~ 0, rp)] and find 
the volume integral. 

Since the heat is propagated with finite velo- 
city c, it takes the heat wave front a certain time 
t, to catch up the moving point of the surface. 
t, can be found from the equation 

ct, = r(e, cp, z + t,); t, = t,(O, cp, z, c). 

Thus, the “useful” volume which produces 
thermal “reflections” is less than stated above 
and equal to D(t) - D(z + r.+... If any point of the 
surface moves with the velocity of heat wave or 
with a higher one, the temperature field in D will 
be the same as in an infinite body. It is easy to 
show that on determining the reflection flux as 
in paragraphs 3 and 4, we also take into account 
the inertness of the process, i.e. its pre-history. 

Let D be the region of variable physical pro- 
perties, i.e. the heat conductivity I, heat capacity 
C, specific weight y depend on B E D and t. 
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After solving for the space R the heat conduction 
equation with variable coefficients, this equa- 
tion being obtained from the hypothesis 

(I is an arbitrary direction) provided 

&Q -PI 
T/P, = k 1 

we find r(Q, 9, t, z). Then to find the function G 
we can construct an integral equation of the 
form : 

G(Q,p, t,$ = 
f 

x G(ii, 9, t, <) dM + r(Q, 8, t, 7). (11) 

The estimate 

i dS f,f qv dS < 1 
r 

is valid for the reflection flow 

The convergence of the successive approxima- 
tion series can be easily proved for equation (11) 
applying the above estimate. 

If the problem of substance diffusion is con- 
sidered, equations (7), (9) and (11) are valid only 
for a region with a uniformly dissipating boun- 
dary, i.e. for such a boundary which reflects 
unifo~~y the substance flow in all directions. 
However the principle of reflection can be 
applied to the case of a boundary of noniso- 
tropic effect, when the reflected flux is character- 
ized by some dissipation function CD@, cp, M). 
The latter need not be a conservative function of 
the point on the boundary, but can depend on the 
angle of incidence of the substance and energy 
carriers to the surface element. This will, prob- 
ably, allow the solution of some problems on 
light phenomena, radiation, etc. 

5. Solution of the first boundary transfer prob- 
lem requires determination of the temperature 
field T(@, t) in D (the region with a fixed boun- 
dary) with the initial condition T(P, O)] = f(P), 
boundary condition 7’(8, t)is = i&P, t) and 
the source function F(44, t) in D. For the sake 
of simplicity suppose that T(B, 0 = 0 and 
F(P, t) = 0. Since G(Q, @‘, t) can be obtained for 
D from equation (7), then to solve the problem 
it is necessary to find from equation (5) the heat 
flux q which initiates the process. 

Let at some moment t the boundary condition 
be obeyed. To satisfy the required boundary 
condition at the next moment, the flux consisting 
of two parts q = q1 + q2 is necessary for the 
surface S. The first component of the flux q1 
serves to keep up the same level of the tempera- 
ture field &P, t) on the boundary, i.e. it neutral- 
izes its own rate of temperature equalization on 
the boundary. The second component 

q2 = k 
&(% t) 

dt 

is necessary for the required time change of 
Cp(P’, t), here 

According to (5) 

q1 = - k ’ dr 
s ff 

(41 + q2) g dS. 
0 s 

The minus sign allows for the neutralization. 
By adding 

1 %W, t) 
dt 

to both sides of the equation, we get 

r 

q(A4, t) = - li 
s ss 

dr q(N, r) 

0 s 

X 
iX(N, M, t - z) 

at 
dN + I;. ai%M, d 

at’ (12) 
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In case of non-uniform 
equation (12) is of the form 

initial conditions A strict mathematical demonstration of this 
fact has probably some difficulties. 

q(M, t) = - k ds J JJ q(N. r) 
aG(N, M, t - T) 

at 
dN +z[y - kjjj(Q) 

0 s D 

X 
WQ, M, t) 

at 
dQ . 1 (13) 

The temperature T(B, t) can be obtained from 
the expression 

T = 5 dz 1s qG dS + k jjsf. G dV, 
0 s D 

which meets all the conditions of the problem 
stated. Some physical meaning can be given 
to the terms of the successive approximations 
series in equation (12) as it was done in para- 
graph 3. It is easy to see that q1 (neutralization 
flux) is an infinite series of successive compensa- 
tions. The first compensation is the neutraliza- 
tion of the temperature equalization rate by 
the flux q2, the second is the neutralization of 
the flow influence in the first compensation, 
etc. As far as the physics of the process is 
considered, the principle of successive com- 
pensations is the only possible means of 
fulfilling the prescribed boundary condition 
with the application of the thermal potential 

The problem for a body with moving 
boundary (the Stefan problem) is to estimate 
the temperature field in the region o(t), pro- 
vided the temperature Cp(P’, t) is given on the 
moving boundary. This problem can be solved 
when G(Q, 9, t, 7) is known for a body of a 
variable volume. For this we introduce the 
unknown heat flux q(M, t) on the moving 
boundary. The process, essentially, is that of 
heat propagation from moving sources in a 
region of variable volume. The condition on the 
boundary gives 

d dr & q(N, r) G(N, M, r) dN(r) 

; k sDso/ f(Q) G(Q, M, t, 0) dQ = t&K t); 

M[r,@ cp, 0, 6, '~1 E s(t); 
N[r,@, cp, d,k c~]~s(d. 

Differentiating by t and allowing for the 
properties of G at N(t) = M(t) and z = t, trans- 
form the above equation of the first kind 
into the equation of the second kind 

t 

q(M, t) = -k dz s ss aG(N, M, t, ~1 
q(N, r) at dN(t) +$T - kjJJf(Q) 

0 S( 1) D(O) 

X 
ac(Q.~>~o)~~ 1 (14) 

The possibility of constructing such a physical which is solved by the method of successive 
model gives some reason to suppose that the approximations. In both cases the first boundary 
successive approximation series for equation problem has only one solution. 
(12) is convergent in the problem considered. 6. Let us now assume the boundary condition 



SOLUTION OF THE GENERAL HEAT AND MASS TRANSFER PROBLEM 1481 

of the third kind, i.e. that the heat-transfer law 
and the ambient temperature are specified on 
the surface. Suppose that the boundary of the 
body is fixed, the initial condition is uniform 
and the heat-transfer law is taken in the form 
of the Newton law of cooling 4 = a (T’, - 
T bound) (a is the heat-transfer coefficient). Then 
the equation for q can be obtained as follows. 
The solution should be found of the form. 

Using the boundary condition we get 

q(M, t) = - a 5 dz sj q(N, z) G(N, M, t - T) dN 
0 s 

+ aT’,(M, t). (15) 

Considering G positive everywhere in D it is 
easy to show that the series of successive 
approximations for equation (15) is absolutely 
and uniformly convergent for the time t from 
the interval 0 d t < to, where to is found from 
the condition 

max 7 dr ss G(N, M, to - z) dN = l/a. 
0 s 

Indeed, we have the estimates 

0 s 

where 

b, = amaxjdrJjG(N,M,t - z)dN < 1. 
0 s 

Applying them in succession we get a geometric 
progression with the denominator b1 < 1, which 
is a majorizing numerical series for the series 
~~~~ + [vi] + 1~~1 + . . . + Iqnl + . . . . There- 
fore the functional series of successive ap- 
proximations is absolutely and uniformly con- 
vergent. 

7. We shall try to show that the class of regions 
for which the function G is constructed can be 

extended. Consider a flat region with a diffrac- 
tion area (Fig. 1). It is seen from Fig. 1 that the 
line MN, along which the diffraction proceeds, 
divides the region into two parts Dl(Q) and 
D2(Q). It is evident that the regions Dl(Q) and 

FIG. 1. 

D2(Q) are more convex than the original one. 
Suppose that G, and G2 are known for the 
regions Dl(Q) and D,(Q). q(q, t) denotes the flow 
on the common boundary MN in the direction 
of the external normal to D,. Then, on allowing 
for the continuity of the temperature field in the 
vicinity of some point L on MN both on D, and 
D, sides, we get 

G,(Q, J% t) - j dz jqh, 4. G,h, L, t - 7) dv] 
0 M 

= d dz [ dvl, z). G&L L, t - z) dv. 

Transform the written equation of the first 
kind into an equation of the second kind by 
differentiating it by t. Similarly considering 
Dl(Q) and Dz(Q), etc., we reduce the estimation 
of G by a finite number of procedures to the 
estimation of the influence functions for the 
regions which differ little from convex, and to 
the successive solution of the proper number of 
integral equations by the usual method. The 
region is almost convex when it can be trans- 
formed into convex by small deformations. 
Taking account of the fact that small changes of 
the influence function correspond to small 
deformations of the region (which can be easily 
substantiated), one can consider the influence 
functions found for almost convex regions. 
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In a similar way G is estimated for multiply 
connected regions and for those with several 
diffraction areas. In the latter case the problem 
is to solve the system of integral equations 
relative to the unknown fluxes ql, q2 on the 
interface. 

The same method, i.e. by consideration of the 
flow on the contacting surface (contour), allows 
the solution of the problem of contact heat trans- 
fer (the boundary condition of the fourth kind). 
An ideal contact provides continuity of the tem- 
perature field when the common boundary is 
being passed, and the flow to the region D, is 
the flow to D2 with an opposite sign. D, and 
D2 are regions with different physical properties. 
Using the previous results it is easy to con- 
struct an equation for q and thus to solve the 
problem. To illustrate this we can analyse the 
problem : the initial temperatures f,(P), 9 E D, 
and f,(Y), 9 E D2 are given for the regions 
D, and D2 with the common boundary. Find 
the field of equalization with no contact with 
the surroundings. Gr and G, are known. 

8. Find the source function G[Q(& q, 0); 
9(x, y, z); t] for the half-space R/2. For this 
problem we write equation (7). 

G(Q, 9, t) = i dz jr qv(Q, M, 7) 
-m 

x G(M, 8, t - r) dM + r(Q, 9, t). (16) 

Direct Q to some point N on the boundary 
plane. When Q -+ N, then cos (I, v) --f 0 and, as 
it is seen from (l), qv = 0 for any r which is not 
zero and for z from the interval 0 < r < r since 
the surface element dM is placed in the direction 
of the vector line of the heat flux. But at r -+ 
O(M + N) and z + 0 due to the fact that 
T(N, 9, r) is delta-shaped, in this point qy has 
such a singularity that 

lim qv dM dz 
r-0 
r-0 

exists, which is denoted by p. That p # co is 
seen from equation (16), since otherwise we 
should have an incorrect equality between the 
finite and infinite values. From the same 

equation it is seen that p # 0 since G # r. 
Thus by means of limiting transition from the 
integral equation we get for G an algebraic 
equation with the unknown coefficient p. 

G(N, 9, r) = pG(N, 9, r) + T(N, 9, r), 

G=- l r 
l-p . 

Integrating both sides of the equation over 
the half-space, we find p from the condition of 
heat conservation 

1 
kGdV =- 

1-P 
kTdV; 

R/Z R/2 

Hence p = $.p is 
through the solid 

the amount of heat flowing 
angle 27~ from the point of 

heat charge onset at the initial moment for 
infinitely short time. Therefore in this point the 
heat content becomes zero in as short time as 
possible. Indeed, this is true since the enthalpy 
of a point with finite temperature is zero. So 
G(N, 8, t) = 2r(N, 8, t). This result agrees with 
the expression for G(N, 8, t) obtained in the 
classical theory of unsteady-state heat transfer. 
The problem above can be referred to as the 
problem of complete reflection. Now the defini- 
tion of G(Q, 9, t), where Q is any internal 
point, leads to the calculation of the integral 

G(Q, 8, t) = 2 i dr 1s” qv(Q, M, 7) 

x &$, t - z) dM + r(Q, 9, t). 

Find G(<, x, t) for the finite section 1. In this case 
equation (7) is of the form 

0 0 

+ m, x, Q. (17) 
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Let r -P 0 then f[(l - x) s] = &[G(l, x, t)] ; 

lirn ar(o, ?, ‘) 
_a% s) = ww, x, a. 

‘Z-0 a7 
dq = 0 

0 
Let us present the above functions in the form 
of series with respect to cos nnx/l. This allows 

for any r from the half-closed interval 0 < r < t, the unknown coefficients C+(S) of the function 
since in this interval f(x, s) to be estimated by equating the coef- 

WO, rl, 4 licients preceding cos knx/l both in the left- and 

az 
right-hand sides of the equation. 

is a finite function. Besides, 

This relation proved in the solution of the 
problem on half-space is also valid for one- 
dimensional variant. Finally we have 

x G(1, x, t - r) dr + 2f(O, x, t). 

co 

so(s) knx 
j-(x, 4 = - 

2 + c Uk(S) cos -, 
I 

k=l 

I 

&r(s) = ; 
s 

knx 
f(X, S) COS -j- dx. 

0 

Find the coefficients u:(s) of the Fourier series 
of the functionf(l - x, s), 

1 

a:(s) = f 
s 

f(1 
knx 

- x, s) cos I dx. 

0 

Apply the Laplace transformation by the vari- Supposing 1 - x = q we have 
able t to both sides of the equation I 

L,[q(t)] = r e-" q(t) dt. 
0 

a:(s) = ; f(tl, 4 s cos kn(1 - rj) 
1 dtl. 

0 

On using the procedure of the convolution type But 

L, [[ cp(r)f(t - r) 4 = &k’(t)1 . bkf@)l cos kx(’ /-- ‘?) = cos kn 

and taking into account that - sin kn sin 3. 
G(1, x, t) = G(0, 1 - x, t) I ’ 

due to the symmetry of the functions G(I, x, t) 
sin kn = 0. 

and G(0, x, t) relative to the middle of the Thus at(s) = (- 1)” ak(s). Using the inverse Lap- 
section, we obtain lace transformation 

co,% 
1 

cos kn = (- l)k; 

fk 4 = - 2k W)f[(l - x), s] + 2f,(x, 4. 
Here 

a+im 

cp(t) = s L,(s) es’ ds, 
a-ice 

Ax, s) = h[G(O, x, d] ; 

Ii/(s) = Lt[ji,r(;; t)d] ; 

0 

we find the coefficient a,(t), as well as G(0, x, t) 
and G(1, x, t). If the pulse appears inside the 
section 1, then G(& x, t) can be found from 
equation (17). 



1484 E. V. TOLUBlNSKlY 

Consider another way of obtaining G(<, x, t) 
by means of the reflection theory method (see 
paragraph 3). It is known that 

f-5 

-k s dT(O, Y, z) --___ drj 
& 

0 

are the reflections of the heat wave r({, x, t) 
(the first reflection) at the moment t at points 
x = 0 and x = 1, respectively. 

Taking into account that complete reflection 
occurs at the ends of the bar, we write G(<, x, t) 
in the form of a finite series of successive 
reflections. 

drl 
1 

W,x, t 
f 0 

f 1-r 

+ 2k2 dr s [S wo, II, 7) 

aT dv 1 
0 0 

f 1 

X 
aw, % f9 - 7) 
-_____ 

a0 drl 1 I 0 

- - 0) dll 

Let us prove the following theorem: if at 
t > 0, r has continuous partial derivatives 
entering the linear differential operator [P] and 
obeys the equation [P][T(Q, 9, t)] = 0, then at 
t > 0, G which is determined from (7) also has 
partial derivatives of the same order in D and 
obeys the equation [P][G(Q, 9, t)] = 0. Prove 
it to be valid, for example, for the case when P is 
an operator allowing for the finite heat propaga- 
tion velocity 

[The Laplace operator A is estimated at the 
point 9(x. y, z)]. 

It is not difficult to show that the integral 
operator 

cp,(Q, PP, tj = i dz asp qv(Q, M, 7.) 

x (~,,-~(Ril, 9, t - tj dM 

has a continuous action on continuous functions. 
cp,(Q, -9, 0) = 0 when cp,_,(Q, 9, 0) = 0. Let 
9’ be an internal point of the region D, Q E S, 
Q = N and (P~(Q, 9, t) = r(Q, Y’, t); then 

‘pl(N, R t) = j dz isi q,(N, M, z) 
0 

x T(M, 9, t - T) dM. 

The kernel q,,(N, M, 7) is singular at z = 0 and 
M = N, but 

lim i dr j j q&N, M, 7) dM 
r+o 0 s 

is finite. It equals 

since 

x ‘(O’ ” ’ - ‘) de - ’ But f(M, Y’, 0) = 0, thus cp,(N, 9, 0) = 0 and 
Since the convergence of the reflection series also &(N, 8, 0) = 0, cp,(N,‘.Y, 0) = 0, etc. If 
is good, we may use only the first few terms of Q is inside D, then the kernel qV is finite and the 
the series. proof of the above statement is trivial. The con- 
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tinuity of the operator is due to the fact that at and the absolute and uniform convergence of 
z # 0, q&V, M, z) is a continuous function of the series composed of first derivatives is 
M and z. established in the same way as was done above 

Form the series 

02 

c %%(Q. p’, t) 
-’ 

at ’ 
n=O 

acpoa 8, t) WQ, 97, t) a&Q, 9, t) = __.~- =. 
at at ’ at 

s 

q,(Q, M, t) . qn- ,@f, 9, 0) dkf 

f + dz s IS s.(Q, M, 4 a40,46 95 t - 4 dM = 
at s ss 

dz 
G(Q, M, 4 ah(M, g’, t - 4 drM 

L:t 
0 s a s 

since p)n_l(M,Y, 0) = 0, (n = 1,2,3,. . .). 

Therefore the series 

(see paragraph 3). Hence at t > 0, G(Q, 46, t) has 
a continuous first derivative with respect to 
t which is equal to 

m a%(Q, p’, tf c at 
@a %%(Q, 9, t) 

n=O c at -. 
n=O 

is formed by the successive app~jcation of the 
above integral operator to the functions be- Compose the series 

cc c a%,(Q* PP, t) I 
at2 ’ 

n=O 
t 

a%,(Q> 9, t) 
---F-- = qv(Q, M, t) . cp;- ,W, P,O) dM + s ss dz qv(Q> M> 4 

a24k of, 8, t - 4 dlM 

at2 
s 0 s 

ginning with the continuous one (by condition) Here 

awJ,~> t) _ 
dt 

Let us show that r’(Q, 9, 0) = 0 for all $P 
and is, therefore, an infinite series of continuous except 9 = Q. 
functions. Since 9 is an internal point, then r(Q, 8% t) r(Q, 9, 0) = li,i t- 

but r(Q, 9, t) = 0 for all t less than 
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r = IQ91 
c : 

since thermal excitation which is propagating 
at finite velocity c has not yet achieved the point 
9. Therefore 

lim f(M’ P’, ‘) = 0. 
t-0 t 

f 

cp;(N, 9,O) = hi 
s ss 

dr 40 (NM, r) 
0 s 

because I”(M, 9, 0) = 0 (NuM E S) (see above). 
It is easy to prove that 

cp;(M, 9, 0) = 0,. . . cp:(M, 9,O) = 0 

by this recurrent procedure. Thus 

f 
a2q”@, p’, t, = - 

at2 s ss dr qv(Q, M, ~1 
0 s 

ah ,W, 9, t - z) dM 

X- 
at2 > 

i.e. the series 

cc 

c d’cp”(Q, 9, t) 
at2 

n=O 

is formed by successive application of the con- 
tinuous operator to the continuous (by condi- 
tion) function 

a2r(M, 9, t) 

at2 

and is an infinite series of continuous functions. 

Since 

a2we 9, t) < A 

at2 ’ 3 
(0 d t < co), 

the absolute and uniform convergence of the 
series composed of second derivatives is estab- 

lished as usual. Therefore, at t > 0, G(Q, 8, t) 
has a continuous second derivative with respect 
to t, 

m a2%(Q, P, t) 

a2G(Qy 93 t, - c at2 at2 . 
n=O 

Similarly one can prove the absolute and uni- 
form convergence of the series 

where A is the Laplace operator, and thus show 
double differentiability of G(Q, 9, t) with respect 
to the co-ordinates x, y, z. 

Find [P]G(Q, 9, t) [see equation (18)]. 
According to what was proved above, the series 
for G can be differentiated term-by-term as 
many times as it is necessary. 

[PI G(Q, 9, t) = .to [PI cp,(Q, 9, t) 

[PI cp,(Q, 9, t) = [P] r(Q. 9, t) = 0 

[PI cp,(Q> 9. t) = [PI / dr s,s qu(Q, M, ~1 

x T(M, 9, t - z) dM = 

d dr !j qo(Q, MT 4 [f’] TM, 9, t - 7) 

according to the above proof. Thus 

[P] q,(Q, .P, t) = 0; 

etc. So each term of the series 

obeys the equation [P] qn = 0 and, consequently, 
the sum of the series G(Q, 9, t) obeys the same 
equation, too. 

Further, it is easy to show that T(9, t) found 
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from the expression 

T(B, t) = 5 dz j J #4, r)G(M, 8, t - z) dM 
0 s 

+ s f U(Q)G(Q, 8, t) 42 
D 

(see above) obeys not only initial and boundary 
conditions, but also the new heat conduction 
equation, if the latter is obeyed by G(Q, S, t). 

In conclusion, let us solve the problem with 
moving heat sources. In a half-plane the boun- 
dary contour of which is in contact with radiat- 
ing medium of steady temperature To, a linear 
heat source is moving along some curve at the 
velocity u(t). The power q of the source depends 
on the co-ordinates x and y = f(x) of the curve. 
The problem considers the ranges of those 
temperature values when the reverse radiation 
can be neglected. Otherwise we should deal 
with non-linear boundary conditions. Initially, 
the source was at the point x0, y, = f(x,). Let 
us find at what time it will be at the point x; 
y = f(x). Find the length of the curve from x0 to 
x; ds = J(dx’ + dy2) = J[l + f’(~)~] dx; 

s(x) = j ds = i J[l f j-‘(~)~] dx; 
X0 x0 

on the other hand 

s(z) = d ds = / u(q) dr]. 

By equating both expressions one gets x(r). 
The amount of heat generated by the source on 
the elementary section ds in the vicinity of the 
point l, which is inside the interval x,-x, is 
equal to 

q[ZJ-(01 ds = qW”(S)l,/[l + f’(O’] d5. 

On applying the relation 5 = r(t) we get 
q[& f(t)] ds = F(z) dz. Now the definition of 
T(P, t) by the principle of temperature fields 

superposition does not present any difficulties 
since G(Q, S, t) is known 

4.9 

T(x, y7 t, = (l/&l) + (l/&J - 1 
To 4 

(-> loo 

x j dt ‘s” G(0, rj ; x, y ; t - z) dq 
0 -Cc 

+ j ~(~)~~~(kf[tW]; x, Y; t - 7) &. 
0 

Here or and .a2 are the values describing the 
emissivity of the surroundings and half-space. 

The integral method allows the solution of 
many unsteady-state heat- and mass-transfer 
problems which can be described by any linear 
differential or non-differential equations. 
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3. 
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Abstract-The paper offers a method of solving transient linear transfer problems on the assumption 
that the solution of the Green function for an infinite space is known. 

A study of different boundary value problems for a comprehensive class of regions is given; an integral 
equation is constructed, the solution to which is the influence function for a given region at adiabatically 
isolated boundary. In the paper it is shown that the constructed integral equation may be solved by the 
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method of successive approximations and the rate of convergence is studied. Further, it IS shown that the 
terms of successive approximation series permit rather lucid and visual physical interpretation facilitating 
the interpretation of the transfer process. 

The construction of the influence function makes it possible to outline in general form the method of 
solving the first boundary value problem. For this a new integral equation is constructed to find the heat 
flux providing transfer process at the given boundary conditions, use being made of the influence function 
for the given region. This integral equation may also be solved by the method of successive approxima- 

tions which permits a rather clearer physical interpretation. 

R&urn&L’article expose une methode de resolution des problemes de transport lineaire transitoire, en 
supposant que la solution du probleme du transport de quantite de mouvement est connue pour un espace 
infmi. 

On a ttudie diffirents problemes aux limites pour une classe &endue de regions. On a etabli une equation 
integrate, dont la solution est la fonction d’influence pour une region don& avec une frontitre isolte 
thermiquement, On montre ici que l’equation integrale obtenue peut ttre resolue par approximations 
successives et l’on &die la rapiditt de la convergence. De plus, on montre que les termes de la serie des 
approximations successives permet une interpretation Claire facilitant l’interpritation du processus de 
transport. 

La construction de la fonction d’influence rend possible d’esquisser, d’une facon g&n&ale, la methode de 
resolution du premier problbme aux limites. Pour ceci, une nouvelle equation intdgrale est etablie pour 
obtenir le flux de chaleur pour les conditions aux limites don&es, en utilisant la fonction d’influence dans 
la region donnte. Cette equation integrale peut dtre resolue egalement par approximations successives. ce 

qui permet une interpretation physique plus Claire. 

Zusammenfassung-Es wird eine Methode angegeben, die eine Losung linearer, instationarer Ubergangs- 
probleme gestattet unter der Voraussetzung dass die Losung der Bewegungsgleichung fur einen unendlich 
ausgedehnten Raum bekannt ist. 

Eine Untersuchung verschiedener Grenzwertprobleme ist ftir eine grosse Zahl von Bereichen durchge- 
fiihrt; eine Integralgleichung, deren Losung die Einflussfunktion fiir einen gegebenen Bereich bei adiabat 
isolierter Wand darstellt, wurde eingefiihrt. Es wird gezeigt, dass die eingeftihrte Integralgleichung nach der 
Methode der sukzessiven Approximation gel& werden kann. Die Konvergenzgeschwindigkeit wird 
untersucht. Weiter ist gezeigt, dass die Ausdriicke der sukzessiven Naherungsreihe eine klare und anschau- 
lithe physikalische Interpretation erlauben, die eine Deutung der Ubergangsprozesse erleichtert. 

Die Einftihrung der Einflussfunktion ermiiglicht es, die LBsungsmethode fur die erste Randbedingung in 
allgemeiner Form zu umreissen. Daftir ist eine neue Integralgleichung aufgestellt, urn den WPrmestrom bei 
gegebenen Randbedingungen zu erhalten. Diese Integralgleichung kann such gelost werden nach der 

Methode der sukzessiven Approximation. die such eine klarere physikalische Deutung erlaubt. 


