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Anporanua—B pafoTe mpejiaraeTCA MeTOJN peHIEHWA HECTAIMOHAPHHIX JMHEAHLX 3amad
TIepeHoca B IPEANONoKeHUH,, YTO U3BECTHO pelIeHNe 3a 44K O IePeHoCe MMITYJIIhCA A HEOrpa-
HHYEHHOTO NPOCTPAHCTBA. PaccMATPHBAIOTCA pPasiWMYHHE KPaeBHe Bajay¥ AJIA HIMPOKOTO
Kiacca o6nacTelt, COCTABNACTCA M CTPOMTCA MHTETPAILHOS yDaBHEHMe, PelIeHHEeM KOTOPOro
apanerca QyHKnmsA BIMAHMA [uA [AaHHOK oOjacTH mpu auMalaTHYeCKH 3aM30TMPOBAHHON
rpannne. B pabore noxkgsano, 4TO HOCTPOSHROE WMHTETpPajbHOE YpaBHEHME MOKeT OHITH
PeleHo MeTOfOM IIOCJIeNoBaTeNbHHX HpUGIMKeHUlt, HcCTenoBaHa GHCTPOTA CXOTHMOCTH.
HKpome Ttoro, moxasaHo, 4TO 4JIeHH PARA IOCJENOBATEJNBHHX NPHGIMMEHUN NOMyCKAIOT
BEChbMA ACHYI ¥ HATIAXHY© (U3NYeCKY0 MHTEPNpPETANMAI0, NOSBOISIIIYIO MCTONKOBATH
HpONEece epeHoca.

Tlocrpoenne PyHKUUM BIMAHWA JaeT BOBMOMKHOCTL YKAsaTh B CaMOM O0HIeM BuAe MeTOX
pelenuA nepBoit Kpaesoit 3anayu. A 21010 € NOMOmBI0 QYHKUMH BIMAHKA IR JAHEOK
0671acT! CTPOMTCH HOBOe MHTerpajibHOe ypaBHEHHe NJA OTHCKAHWA TENJA0BOTO MOTOKA,
OCYIECTBIAIOMEro NpoNecc HePeHOca NpM SaJaHHHX TPAHAYHHX YCIOBMAX 3afauM. J10
HHTErpajibHOe YpPaBHeHME BHOBbL DeIIAeTCH METOJOM IOCJHeROBATENBHHX NPUCIHIKERUH,

TAKMKE JOMYCKAIOMMX BeChbMa HATIARHYH PU3MUECKYI0 TPAKTOBKY.

NOMENCLATURE T, temperature;
a2, thermal diffusivity coefficient ; X, ¥, Z, co-ordinates.
c, diffusion rate; '
C, specific heat ; ' Greek symbols
D, region; o, heat-transfer coefficient ;
f(Q), initial temperature ; 7 specific weight ;
F(#, 1), function of sources; r, Green function for whole space;
G(Q, #,t), temperature field, Green func- 9, delta-function;

tion for region D; a4, Laplace operator;
J, heat content ; &, emissivity;
k, = Cy; & time moment ;
L, Laplace transformation; ", co-ordinate;
L,M,N,0,P,Q, points; P, 0,8, spherical co-ordinates;
n=123, reflection number; Ay heat conductivity;
P, differential operator; v, external normal;
q, heat flux; T, time moment ;
r, radius-vector length |QP|; o, temperature of body surface;
R, space; o6, 9, M), dissipation function.
S, boundary surface of the region D;
t, time; 1. RECENTLY a number of works have appeared
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in which a diffusion (heat-conduction) equation
is stated to include the effect of the finite diffusion
rate of a substance or energy carrier, e.g. the
papers by Fock [1] dealing with one-dimen-
sional diffusion of a light beam, by Davydov [2],
Lyapin [3] and Monin [4] on turbulent dif-
fusion, by Kramer and Chandrasekhar (see
reference [6]) who thoroughly analysed the
Focker-Planck difference equation describing
the probability of the presence of a particle in
Brownian motion at the point x and time
instant ¢, by Goldstein [5] who solved the
problem of random motion of particles which
lost their ““‘memory” (i.e. particles which are in
Markovian process), by Davies [6], Vernotte
[7], Cattaneo [8] and others.

In these works a hyperbolic equation, the
so-called telegraph equation, is obtained by
different ways for the unsteady-state diffusion
(heat conduction) process. The equation differs
from an ordinary parabolic one by the presence
of the term 1/c? 3*T/dt? and is the result of a
more profound analysis of the phenomenon.
In the above term ¢ is the diffusion rate. It has
been proved that the classical approximation
is not applicable to a number of problems,
namely to those in which the diffusion rate
cannot be assumed infinite or the mean free
path of particles negligibly small.

Analysis of the Boltzmann equation [9]
shows that a similar pattern exists for example
in metals at high temperature gradients. In this
case there is no classical relationship between
heat flux and gradient. In particular, infinite
gradients do not cause infinite fluxes, which in
reference [9] is referred to as paradox in heat
conduction. It means that the basic solution of a
heat-conduction equation for short time inter-
vals (in the region of large gradients) does not
correspond to the true temperature field.

In reference [6] the basic solution (for the
whole space) of the telegraph equation is given
and it is proved that for long time intervals it
asymptotically approaches the basic solution
of the heat-conduction equation (of parabolic

type).
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The influence function for two- and three-
dimensional space is given in reference [10].
In the latter case the function is of the form

e, 2,t) = cr 6_5“202'{(5(61‘ -7
n a*er
2/r* =
x Jy [zale/r* — 2 ulet — 1),
where a? is the thermal diffusivity coefficient,
¢ is the diffusion rate (or the rate of thermal

excitation transfer), r = |Q2), J, is the Bessel
function and

_Jo at <0
MD =91 at p> 0
when
¢ — 00, IrQ,2,t)
> exp[—r¥/4d*].
(Za\/nt)3 exp [ —r?/4a*t]

This paper presents the construction of the
general solution of a wide range of transient
non-linear transfer problems, with any initial
and boundary conditions, on the basis of both
the function of the source in the form of unit
pulse, determined over the whole space R and
obtained analytically or by the data of one
fundamental experiment, and the superposition
method which gives rise to no doubts as far
as low-temperature fields are considered. It
does not resort to any additional suppositions
on the character of the heat-conduction and
diffusion processes.

This method, called an integral one, allows
for both the inertness of the process and the
velocity of heat or substance propagation and
includes, as a particular case, the solution of the
same problem based on the Fourier hypothesis,
thus being more extensive than the one based
on the solution of some differential equation.
Henceforth the transfer process is referred to as
heat conduction, and talk of heat propagation.

The most general heat-conduction problem
is stated as follows: Find the temperature field
in the region D (which, in general, is not singly-
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connected) if it has some initial temperature
distribution T(2, 1)|,-, and heat is liberated at
each point of the region with intensity F(£, 1).
We know the temperature of the body surface
(S, t) (the boundary condition of the first kind)
or the value of the heat flux on the boundary S
of the body ¢(S, t) (the boundary condition of
the second kind), or alternatively the heat
transfer law and ambient temperature are
given, e.g. Newton’s law of cooling ¢ = «T,,
— Tiouna) (the boundary conditions of the third
kind). In addition, boundary conditions of the
fourth kind may be given for the surface S.
This is the so-called contact heat conduction,
when the region D is in contact (i.e. has a
common boundary) with another region D* of
definite physical properties. A close contact
provides continuity of the temperature field at
a contact point. By the heat conservation law,
the flux to the region D is the flux to D* with
an opposite sign.

2. Let D be a convex region with the boundary
S. The problem is to estimate the temperature
field G(Q, £, t) at point £ and time ¢, when a unit
amount of heat is liberated instantancously at
some point Q of the region at t = 0, and the
surface is thermally insulated. In solving this
problem, the principle of superposition is
supposed to be valid and the influence function
I'Q,#,t) is considered known for the whole
space R(Q,#Z € R). First of all consider the
following problem: at t = 0 a unit heat pulse is
liberated at point Q of three-dimensional space
R. Let us encircle the point Q by a closed convex
surface S which does not obstruct heat propaga-
tion. Find the heat flux ¢(Q, M, t) at point M of
the surface in the direction of the external normal
v. Consider the sphere Q with the radius z =
|QM | and point Q as centre. The heat flux g,
through its surface, being directed out of £, is
equal to the time derivative of the enthalpy in
the region R — Q.

0
qQ(Qa M’ t) = E‘[J‘J‘kr(g’ ‘@5 t) dz
R-Q
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where k is the product of the specific heat by
the specific weight. Owing to the isotropy of the
space both the heat flux and the temperature
field I'(Q, 2, t) possess spherical symmetry rela-
tive to the point where the heat pulse appears.
This means that on the sphere with the point Q
as the centre the flux g, does not change its
scalar value. g, is a flux through a point on the
sphere in the direction of r = |Q2)|. Therefore

do = ”qrdsn = qr-47”'2
30
and

L[ i
4 r? P
r=|oM|
Let dQ, be the heat flux through the element
dS,, of the spherical surface for the time d¢:

dQl = qr dSQ dt,

and dQ, is the heat flux through the element dS
of an arbitrary surface §':

dQ, = ¢,dS dt.

dp.

dS, and dS are in the vicinity of the point M.
Using dQ, = dQ, and dS = dSy/cos (r, v) one
obtains g, = q, cos (r, v). Then

g =k cos (r, v) g ar(p,t)

v r? ot
r=Tou|

But
0 0
R-Q Q

With this in mind one can write g, in the form

dp.

r=|QM

cos (r, v)

ol(p, t)
p? 2F

2 dp. (1)

r
1]

In case of two-dimensional space

cos(r, v

r

ol'(p, 1)
at

dp.

0
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It is not difficult to show that the function
q(Q, M, t)is a continuous variable of Q and M for
t > 0. Moreover it will be shown later that g, is
singular at r — 0 and t —» 0. The amount of heat
through S for the time ¢ is equal to

[dr ] aqds.
0 M

It is also the difference between the enthalpy of
the region R — D at the time moment ¢ and that
at the initial moment. Thus

dr | | ¢(Q, M, 7)dM =
S
{ [ krQ 2,1d2 =
R-D
1— [ [[krQ 2 1d2. (2)
D

(=i TN

Hence .
[drffqds<1 3)
0 S

for any point Q € D and for all finite . Note that
g, 1s a positive function for convex regions since
q, > 0 and cos (r, v) > 0 for such regions.

Let us suppose now that the boundary S of the
region D is mobile, and the region D at all
t € (0, ty) is convex. It is also supposed that the
motion of the boundary S does not disturb the
heat conduction process in R, ie. S is “trans-
parent” for heat. The change of heat content in
the region D is provided both by heat conduction
and by displacement of the boundary. So that

2n T
0JQ.0 _ kf d(pj sin 0 6
0 0

ot

rold, @, 1)

p? ol(p, 0, 9, t)

ot dp

0
2n

+ kj de j sin 0+ ry(6, @, 1) - r5(6, @, 1)
0

X F[rO(O’ @, t), 0, Q, t] dG,T

1 Since in general the origin of co-ordinates does not
coincide with the point of heat pulse onset, I'(Q, 2, t)is not a
spherically symmetrical function relative to the point O but
depends also on 6 and ¢(p = |02)). -
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where ry(6, @, 1) = |OM(t)

k]

_drol0, ,0)

ro(0, @, 1) i

and the point O is the origin of co-ordinates.
The first summand describes the change of
enthalpy by heat conduction, the second one
that due to the change of the region D itself.
In this case therefore

a(Q, M, 1) = _kg[grr((tt)_)izv(_tﬂ
r()
or(p,
XJ‘ __.gz_t) p2 dp — k cos [ro(t), v(t)] (@)

o]

ro(tr[Q, M), 1]

where r(t) = |QM(t)|. If the moment 7 of the
origin of the heat pulse does not coincide with
the time origin (O < 1 < t), then

or(p,t — 1)
ot

and I'[Q, M(t), t — 7] should be substituted for
ol'(p, t)

ot

and I'[Q, M(t), t] respectively in the expression
for q,.

3. The principle of superposition, as can be
easily shown, makes it possible to write the
solution of the general heat conduction problem
for boundary conditions of the second kind
directly, if the influence function G is known for
a given region. For example, when T'|,_, = f(#),
the heat flux on the surface equals g(M, ) and
the function F(Z, t) of the source acting in D is
given, the temperature T(£,t) can be found
from the expression

TP, t)=k | g} | fIQG(Q, 2, 1) dQ
+ fdf [§ M) GM, 2t - 1)dM

+ idf [{]FQ0 GQ21-nd0 (5
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Here the influence of the initial conditions on
the temperature field is written for the case when
these conditions are specified by a given field
function at an initial instant in time. For trans-
fer problems with initial conditions not com-
pletely defined by this function alone, the effect
of the initial conditions will, of course, be dif-
ferent. If, for instance, the transfer process de-
scribed by the hyperbolic equation is discussed,
then it is necessary to add terms to the right-
hand side of the expression

= [T

G(Q, P, t)

t=

r@ 2]

The expression for the effect of the boundary
conditions and inner sources is unchanged.
Therefore the basic statements and conclusions
of the assumed method are valid in this case.

Thus determination of the function G is the
primary problem in the study of heat conduction.

By considering the mechanism of heat (mass)
transfer one can conclude that the original heat
pulse is propagating in the region D in the same

do.
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(0, M,1)dSdr. q(M, N, ¢ — 1)do d¢

on the elements of the boundary dg at the mo-
ment ¢ for the time dé. (M, Ne S;t < & < 1)
This result of the first reflection effect on the
boundary elements is called the second reflection,
etc. The task is to describe the process as an
infinte series of reflections allowing for the con-
dition of absolute ‘“‘opacity” for heat of the

" boundary S and to prove its convergence. Let

us find, for example, the contribution of the
second reflections (the third term of the series)
to the temperature field G. For this purpose
multiply the value of the second reflection by the
influence function for the whole space

F(Na'@’t_é)

and integrate along the surface by the variable
N and time £, changing from 7 to ¢. This means
that for the time ¢t — 7 the first reflection leaves
heat charges at any point N of the surface. Then

changing from O to t. This means that the first
reflections, which give rise to the second ones and
the infleunce of which is being allowed for now,
appear at any point M of the surface for the time
t. Consequently, the appropriate addition is of
the form

Oy

and the unknown series is

G(Q.2,1)

dr sfqv(Q, M, r)ded&”qv(M, N,&—1).[(N,2,t — £)dN,
t N

=TIQ. 2,1 + fdz {[af6. M, 7). (M, 2,t — 1)dM
0 S

+ idrjsqu(Q,M,r)deEdé_[squ(M,N,{ ~ . I(N,2,t —OdN +....  (6)

way as in the whole space. Due to the superposi-
tion of heat insulation upon the boundary, this
pulse leaves a heat charge ¢,(Q, M, )dS dr,
being called the first reflection in this paper, on
each element dS of the surface for the time dz.
This charge will, in its turn, propagate by the
principle of independence of action as it does in
the space R, leaving the charge

Note that the reflection series is very similar to
the solution of an integral equation with the
kernel q,, which has been obtained by the method
of successive approximations. The integral equa-
tion can be constructed, based on the fact that
the effect of the adiabatically insulated boundary
(heat barrier) will result in the “reflection” of
the flux q,(Q, M, 1) into the region D. Otherwise,
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the function G is the result of the superposition
of heat sources with the intensity g,, distributed
along S plus the source function for an infinite
space

GO, 2,0 = | dt | [ 4@, M, 1)
0 §

x GM, 2,t — 1)dM + I'(Q, 2, 1)
or

GO, 2,1) = g dr fsj a0, M, t ~ 1)
x GM, #,1)dM + TI'(Q, 2, t). (7)

In a particular case when I and G are Green
functions of the heat conduction equation with
boundary conditions of the second kind for the
whole space and the region D respectively, then
equation (7) is directly obtained by applying the
Green formula to I' and G with subsequent
integration from O to t. In this case according to
the Fourier hypothesis it should be supposed that
or
qv - '{ av'
Equation (7) has a unique solution which can
be found by the method of successive approxima-
tions when supposing ¢, = I'(Q, #, 1).

@0, 2,1)
= (j;d‘r fsf 4,0, M, t — 1), (M, 2, 1) dM.

Then
G=¢o+ ¢, +0;4+...+0,+.... (8

Let us prove the uniform convergence of series
(8) of which the terms are all positive functions.
We have

t
(Pn = g d‘C SSI qv(pn—l dS

But ¢,_,(Q, 2, 1) is the finite function in the
interval 0 < t< o0 at n > 2 since the required
type of singularity for G at the point # = Q and
t = 0 (at this point it is a delta-function) is pro-
vided by the zeroth approximation ¢,. Conse-
quently, ¢,.; < A. Then ¢, < A x b where

E. V. TOLUBINSKIY

b=max {dt-| | qdS <1
0 S

[see (3)]. Applying these estimates to all terms
of series (8) we shall get a numerical series which
is a geometrical progression with the denomi-
nator b < 1. This series being a majorant for the
functional series (8) converges. Thus sertes (8)
converges uniformly in the interval 0 < t < .
The identity of the terms in series (8) and (6) can
be easily shown after the appropriate substitu-
tion of variables.

Let us show that in this the condition of heat
conservation is obeyed, i.e.

k{[]GQ20d2=1 (QeD)

Integrate both sides of equation (7) with respect
toD

k§ll6Qend? -
dr | | ¢(Q, M, t — 1) dM
N
| | kGM, 2, 1) d2
D
+k [ | IQ20d2
k

|
j

On supposing this condition to be obeyed we
come to equality (2) proved above. But the
integral equation has a unique solution. Thus
the integral

kif]6@20d2

which is equal to 1 is defined unambiguously.

4. By the methods indicated in paragraphs 2
and 3 one can find the function G(Q, #, t, 1) for
the region within the moving boundary. In this
case the problem is stated as follows. There
appears a heat pulse of unit intensity at some
point Q of the region D of variable volume (mass)
at the moment 7. The gain of mass (the case of
expansion of the region D is considered) has a
zero excess temperature. The boundary is heat
insulated. Find G(Q, £, t, 7). This problem is
characterized by the presence of a moving boun-
dary and, hence, by the fact that the temperature
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field depends not on the difference ¢t — 7 but
on t and 1, since not only the time of action
t — 7 but also the moment 7 of pulse onset is
important.

It should be noted that if the body volume is
decreasing steadily and

|cos [ro(t), v(t)ro(6, @, Hl> ¢

(the heat propagation velocity) for all0 < ¢ <
27,0 < 0 < wand t < & < t,, then the tempera-
ture field G(Q, 2, t, 7) will be I'(Q,#,t — 1) since
the “reflection” flux is excluded together with
mass adjacent to the surface. In this case the
condition that flux on the boundary equals zero
is not obeyed. To obey this condition it is neces-
sary to consider the “‘vanishing” mass as having
zero temperature. In this case the solution to the
problem is similar to the solution of the problem
of an expanding region, which will be discussed
below.

Let us determine I'(Q, 2, ¢ — 1) on a newly
appearing bed of the substance, each time re-
presenting its zero temperature as

IrfQ M@, & — 1] — I'[Q, M(&), ¢ — 1]

Thus the first reflection on the element dS for
the time d¢& will be the sum of heat, which should
pass through dS for the time d¢ due to the
heat conduction according to the proper scheme
of the problem for the space R (the model is
meant of the region expanding in the infinite
space of which the temperature field is

rng2:<¢-1

and the region itself does not disturb the process
of heat conduction in R), and the enthalpy of
substance bed, which has appeared on dS for
the time d¢£ at the moment £ due to the motion of
the boundary S(¢) at the temperature

{—I[Q M), ¢ — ]}

Therefore, the reflection flux is (4). Now without
determination of the reflections of the 1, 2, . . .nth
order or their effects on the temperature field in
D, we shall directly write an integral equation
proceeding from the fact that in this problem
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G(Q, 2, t, 1) should be considered as the result
of superpositions of heat sources with unit
intensity q,, which are placed on S and move to-
gether with S, plus the function I" for the whole
space.

GO, 2, 1,1) = | d [ { a0 M. ¢]
x G[M(®), 2,1, €] AM(&) + T(Q, 2.t — 7). (9)

The relation

{ (g 0.[0, M(&), 7, €] AM(¢) =
—k(@/0%) | I I rQ,#,¢ - 1d®

holds for q,. After integrating it with respect to
¢ from 1 to t we obtain

I d¢ Is@g 4.[Q, M(¢), 7, ] dM(¢) =
1—k ||| IQ®t—1d? (10)
D(t)

Therefore

j dé 'g'(gj). qv[Q9 M(é), 7, é] dM(é) < 1.

Using these results it is not difficult to estab-
lish the convergence of the series of successive
approximations for equation (9) in the same way
as was done for equation (7). It should be taken
into account that @,, ¢,, . . . @, are continuous
functions everywhere in D(t) which tend uni-
formly to zero at ¢t — 7, since the required singu-
larity can be provided forGat # = Qandt = 1
by the zero approximation ¢, = I'(Q, 2,t — 1).
Further, the following considerations make this
convergence evident. If the heat pulse appears
simultaneously both in a body with a fixed
boundary and in a similar body with moving
surface, which extends its volume, then in the
second case the influence function will be less
than in the first one since heat diffuses into a
larger volume. But for the first problem the con-
vergence of the series is proved, therefore it will
be valid for the second case as well, as the series
of successive approximations can be visually
explained by the “‘reflection” theory.
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The fulfilment of the condition of heat conser-
vation can be proved possible by the well-
known method. Integrate both sides of the
equation by D(¢)

k{|fGQ®t0d? =
D(r)

§dg 55(55) a,[Q, M(&), 7, £] dM(%)
IFRERC L EARITE

+k[]ITQ2t - )d2.

On supposing

| Dj( )j kG(Q,2,t,6)d? =1  [QeD@)]

t
we get true equality (10). But integral equation
(9) has a unique solution, therefore

[ k6Q 2,t,6d? =1 (<E<t)
D()

Let us consider in more detail how to obtain
the solution of equation (9) by the method of
successive approximations. The problem is
solved in the spherical system of co-ordinates. On
the moving surface the point M(&) has co-
ordinates rq(0, @, &), 8 and ¢. The surface ele-
ment in spherical co-ordinates can be written
as

r3(0, @, &) sin 6 dO do
cos [ro(&), w(&)]

ds(¢) =

to the accuracy of infinitesimals of a higher order
of magnitude. Therefore, on determining g, from
formula (4) we have

qv = qv[Q(pl’ 91’ (Pl)’ rO(Ba (P, 6)9 65 (P’ T, é]

Now it is clear how to find ¢,(Q, £, t, ) using
the recurrent formula. To do this, in

On— 1(Q’ gl, t’ T)
we should substitute Q(p,, 6,, @) by

M[r0(69 (pa é); 09 (P]7
7 by &, multiply by
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0,001, 61, 1), 7o(6, 9, €), 8, 0, 7, &]
r¥(0, @, &) sin 6 d0 do d¢

cos [ro(&), W(&)]

and integrate by ¢(0 < ¢ < 27n), 000 < 6 < =),
and & € & < t). The problem can also be
solved in another system of co-ordinates.

The moving surface will have covered the
volume D(t) — D(z) bounded by two surfaces
S(t) and S(¢) by the time ¢, therefore one can
determine the reflection series in another way by
integrating over the volume

ro(8, @, t)

n 2z
josinﬂd()!)d(p .. p*dp.

ro(6, ,1)

In this it should be taken into account that £,
the time of rise of the reflected pulse at a
point of the internal volume, depends on the co-
ordinates of this point p, 6, ¢ and is determined
from the relation

&= Up, 0. 0)

Then q, = q,[Q(p1, 81, ©1): p, 6, @, 7, &(p, 0, 9)]
and to obtain the nth approximation, it is neces-
sary in the (n — 1)th one to substitute p, 6, ¢ for

Qpy, 05, @1); &p, 0, @) for t; multiply by
qv[Q(pD 613 (Pl)a ps 8’ ® 1, f(l), 9’ (,0)] and find
the volume integral.

Since the heat is propagated with finite velo-
city ¢, it takes the heat wave front a certain time
t, to catch up the moving point of the surface.
t,. can be found from the equation

Ct* = r(65 @, T + t*)’ t* = [*(9, ®. T C).

Thus, the ‘“useful” volume which produces
thermal “reflections” is less than stated above
and equal to D(t) — D(z + t,). If any point of the
surface moves with the velocity of heat wave or
with a higher one, the temperature field in D will
be the same as in an infinite body. It is easy to
show that on determining the reflection flux as
in paragraphs 3 and 4, we also take into account
the inertness of the process, i.e. its pre-history.
Let D be the region of variable physical pro-
perties, i.e. the heat conductivity A, heat capacity
C, specific weight y depend on 2 € D and t.
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After solving for the space R the heat conduction
equation with variable coefficients, this equa-
tion being obtained from the hypothesis

_ oT
q = —MU2, t)Fl_

(1 is an arbitrary direction) provided
%0 —P)
k ¥

we find I'(Q, 2, ¢, 7). Then to find the function G
we can construct an integral equation of the
form:

G(Q, 2, t,1) =

t

—fdﬁfji(M,é)éllg—;jiéLQ
4 8.

X GM, 2,1, 8)dM + I'(Q, 2,¢t, 7). (11)

The estimate

?"lt=r =

[de [[qdS<t
T S

1s valid for the reflection flow

orQ M, &)
av

The convergence of the successive approxima-
tion series can be easily proved for equation (11)
applying the above estimate.

If the problem of substance diffusion is con-
sidered, equations (7), (9) and (11) are valid only
for a region with a uniformly dissipating boun-
dary, ie. for such a boundary which reflects
uniformly the substance flow in all directions.
However the principle of reflection can be
applied to the case of a boundary of noniso-
tropic effect, when the reflected flux is character-
ized by some dissipation function ®6, ¢, M).
The latter need not be a conservative function of
the point on the boundary, but can depend on the
angle of incidence of the substance and energy
carriers to the surface element. This will, prob-
ably, allow the solution of some problems on
light phenomena, radiation, etc.

4y = _‘A‘(M’ é)
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5. Solution of the first boundary transfer prob-
lem requires determination of the temperature
field T(#, 1) in D (the region with a fixed boun-
dary) with the initial condition T(2, 0)|= (%),
boundary condition T(%,t)|s = ¢(#,t) and
the source function F(#,t) in D. For the sake
of simplicity suppose that T(#, 0 = 0 and
F(2,t) = 0. Since G{Q, 2, t} can be obtained for
D from equation (7), then to solve the problem
it is necessary to find from equation (5) the heat
flux ¢ which initiates the process.

Let at some moment ¢ the boundary condition
be obeyed. To satisfy the required boundary
condition at the next moment, the flux consisting
of two parts ¢ = q; + g, is necessary for the
surface S. The first component of the flux ¢,
serves to keep up the same level of the tempera-
ture field p(2, t) on the boundary, i.e. it neutral-
izes its own rate of temperature equalization on
the boundary. The second component

_ 002, 1)
q; = ot

is necessary for the required time change of
@(2, t), here

- 1
" [ [ GIN,M,0)dN"
s
According to (5)
' G
gy = — EJ‘dT J:{(‘h + ‘Iz)"‘a“l:ds-

1} §

The minus sign allows for the neutralization.
By adding

do(M, 1)
ot

to both sides of the equation, we get

gM,t) = — EJdrjjq(N, 1)
[¢] S

" IG(N,M,t — t)dN 4 k.ar;z(M, t)‘
ot ot

k

(12)
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In case of non-uniform initial conditions
equation (12) is of the form

qM,t) = — ‘EJ dr qu(N, T)M dN + E[aqﬁ(‘;\l 1)
0 S

ot

E. V. TOLUBINSKIY

A strict mathematical demonstration of this
fact has probably some difficulties.

—k” Q)

y 0G(Q, M, 1)

. dQ]. (13)

The temperature T(Z, t) can be obtained from
the expression

T = [dt[[4GdS + k{[{f.GdV,

which meets all the conditions of the problem
stated. Some physical meaning can be given
to the terms of the successive approximations
series in equation (12) as it was done in para-
graph 3. It is easy to see that g, (neutralization
flux) is an infinite series of successive compensa-
tions. The first compensation is the neutraliza-
tion of the temperature equalization rate by
the flux g,, the second is the neutralization of
the flow influence in the first compensation,
etc. As far as the physics of the process is
considered, the principle of successive com-
pensations is the only possible means of
fulfilling the prescribed boundary condition
with the application of the thermal potential

fdr [fqGds.
> ¥

The problem for a body with moving
boundary (the Stefan problem) is to estimate
the temperature field in the region D(¢), pro-
vided the temperature @(Z,t) is given on the
moving boundary. This problem can be solved
when G(Q, 2,1, 1) is known for a body of a
variable volume. For this we introduce the
unknown heat flux ¢(M,?¢) on the moving
boundary. The process, essentially, is that of
heat propagation from moving sources in a
region of variable volume. The condition on the
boundary gives

jd‘t {§ q(N,7) G(N, M, 1)dN(z)
1] S(1)

+ k M f(Q) G(Q, M, 1,0)dQ = (M, 1);

M[r()(e’ (p5 t)a 95 (P] € S(t)9

N[ro(6, 9,7), 6, ¢] € S(x)
Differentiating by ¢t and allowing for the
properties of G at N(t) = M(t)and t = ¢, trans-
form the above equation of the first kind
into the equation of the second kind

gdM.t)= — & j dr ” N SE M LD gy

ot

0 S(1)

- [8(p(M t)

—kﬂf e

D(0)
M,1,0
G(Q, t)Q]

o (14)

The possibility of constructing such a physical
model gives some reason to suppose that the
successive approximation series for equation
(12) is convergent in the problem considered.

which is solved by the method of successive
approximations. In both cases the first boundary
problem has only one solution.

6. Let us now assume the boundary condition
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of the third kind, i.e. that the heat-transfer law
and the ambient temperature are specified on
the surface. Suppose that the boundary of the
body is fixed, the initial condition is uniform
and the heat-transfer law is taken in the form
of the Newton law of cooling ¢ = a (T, —
Touna) (o s the heat-transfer coefficient). Then
the equation for g can be obtained as follows.
The solution should be found of the form.

t
[dz{fqGds.
0 M
Using the boundary condition we get

qgM,t) = — O(jd‘[ ” q(N,71)G(N,M,t — 1)dN
0 s

+ aT, (M, t). (15)

Considering G positive everywhere in D it is
easy to show that the series of successive
approximations for equation (15) is absolutely
and uniformly convergent for the time ¢ from
the interval 0 < ¢t < t,, where ¢, is found from
the condition

to
max | dr [[ G(N, M, t, — ©)dN = 1/a
o] N

Indeed, we have the estimates

“/’Ol = ’“' Tsurl < A1’(P1l <

t
Otj.d‘L'”](polGdS <A1b1
0 S
where
t
b, = ocmaxjdrij(N,M,t —1)dN < 1.
0 S

Applying them in succession we get a geometric
progression with the denominator b, < 1, which
is a majorizing numerical series for the series
lool + |@1] + |@2] + ... + |@.] + .... There-
fore the functional series of successive ap-
proximations is absolutely and uniformly con-
vergent.

7. We shall try to show that the class of regions
for which the function G is constructed can be

1481

extended. Consider a flat region with a diffrac-
tion area (Fig, 1). It is seen from Fig. 1 that the
line MN, along which the diffraction proceeds,
divides the region into two parts D(Q) and
D,(Q). 1t is evident that the regions D,(Q) and

D,

0,

Fic. 1.

D,(Q) are more convex than the original one.
Suppose that G, and G, are known for the
regions D,(Q) and D,(Q). q(#, t) denotes the flow
on the common boundary M N in the direction
of the external normal to D,. Then, on allowing
for the continuity of the temperature field in the
vicinity of some point L on MN both on D, and
D, sides, we get

t N
G(Q,L,t) — [dt | qn,7).G(n, L.t — 7)dp
0 M
= [dr I q(m.7). Gy(n, L, t — 7)dy.
4] M

Transform the written equation of the first
kind into an equation of the second kind by
differentiating it by t. Similarly considering
D(Q) and D,(Q), etc., we reduce the estimation
of G by a finite number of procedures to the
estimation of the influence functions for the
regions which differ little from convex, and to
the successive solution of the proper number of
integral equations by the usual method. The
region is almost convex when it can be trans-
formed into convex by small deformations.
Taking account of the fact that small changes of
the influence function correspond to small
deformations of the region (which can be easily
substantiated), one can consider the influence
functions found for almost convex regions.
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In a similar way G is estimated for multiply
connected regions and for those with several
diffraction areas. In the latter case the problem
is to solve the system of integral equations
relative to the unknown fluxes g,, g, on the
interface.

The same method, i.e. by consideration of the
flow on the contacting surface (contour), allows
the solution of the problem of contact heat trans-
fer (the boundary condition of the fourth kind).
An ideal contact provides continuity of the tem-
perature field when the common boundary is
being passed, and the flow to the region D, is
the flow to D, with an opposite sign. D; and
D, are regions with different physical properties.
Using the previous results it is easy to con-
struct an equation for ¢ and thus to solve the
problem. To illustrate this we can analyse the
problem: the initial temperatures f,(#), Z? € D,

and f,(#?), €D, are given for the regions.

D, and D, with the common boundary. Find
the field of equalization with no contact with
the surroundings. G, and G, are known.

8. Find the source function G[Q(&, n, 0);
#(x, y, z); t] for the half-space R/2. For this
problem we write equation (7).

6.2, = [de [f a(0.M.9

x GM, 2,t — 1)dM + I'(Q, 2, 1). (16)

Direct Q to some point N on the boundary
plane. When Q — N, then cos (r, v) - 0 and, as
it is seen from (1), g, = 0 for any r which is not
zero and for 7 from the interval 0 < 7 < 7 since
the surface element dM is placed in the direction
of the vector line of the heat flux. But at r —
(M —» N) and >0 due to the fact that
I'(N, 2, 7) is delta-shaped, in this point g, has
such a singularity that
lim g, dM dt

r—0
—0

exists, which is denoted by p. That p # oo is
seen from equation (16), since otherwise we
should have an incorrect equality between the
finite and infinite values. From the same

E. V. TOLUBINSKIY

equation it is seen that p # 0 since G # I
Thus by means of limiting transition from the
integral equation we get for G an algebraic
equation with the unknown coefficient p.

G(N,2,t) = pG(N,2,t) + (N, 2,1),

G=—"-T.
l—p
Integrating both sides of the equation over
the half-space, we find p from the condition of

heat conservation

JﬁkGdV _ L Jﬂkrdv;
1—p
R/2 R/2
1 1
1 -_ (1—-‘p‘> . 2.

Hence p = }.p is the amount of heat flowing
through the solid angle 2z from the point of
heat charge onset at the initial moment for
infinitely short time. Therefore in this point the
heat content becomes zero in as short time as
possible. Indeed, this is true since the enthalpy
of a point with finite temperature is zero. So
G(N, 2,t) = 2I (N, 2, t). This result agrees with
the expression for G(N,%,t) obtained in the
classical theory of unsteady-state heat transfer.
The problem above can be referred to as the
problem of complete reflection. Now the defini-
tion of G(Q,#,t), where Q is any internal
point, leads to the calculation of the integral

62,0 =2[de [f /0. M.9)
« (M, 2,t — 7)dM + I'(Q, 2, 1).

Find G(¢, x, t) for the finite section [. In this case
equation (7) is of the form
1 ¢

G(¢, x, 1) = — kJ‘[J'@X(%;m_an]

0.0
x G(0, x,t — t)dz

t 1=

(4
- k”ij ‘3—11%1—"’1)@] G(, x,t — 1)de

0 0.
+ I'(¢, x, ¢). (17
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Let £ - O then

_foro,m1 .
l‘%j“‘a?“d” =0

[

for any  from the half-closed interval 0 < 7 < ¢,
since in this interval

or@,n, )
ot
is a finite function. Besides,
¢
) oro,n, )
lim — by =
:1—1:% kTJ. ot dn=»p
=0 °

This relation proved in the solution of the
problem on half-space is also valid for one-
dimensional variant. Finally we have

t 1

GO, x, t) = —ZkJ[j—a—]i(&”’—r)dry]
0t

o 0

x G(l, x,t — t)dt + 2I'(0, x, t).

Apply the Laplace transformation by the vari-
able ¢ to both sides of the equation

Lle@®)] =

Oty 8

e ¥ o(t)dt.
On using the procedure of the convolution type

L[] ¢(0)/(¢ = 4] = Llo®]. LL/()

and taking into account that
G, x,t) = GO,] — x,¢t)

due to the symmetry of the functions G(J, x, t)
and G(0,x,t) relative to the middle of the
section, we obtain

fx,5) = =2k Y(s) f[(I ~ x), 5] + 2folx, 3).
Here

fix,s) = L[GO, x,1)];

1

oro, »,
Y(s) = L, U__(_atn_t_) dn] ;
0

1483

f[(l - x) S] = Lt[G(L X, t)],
fO(x’ S) = LI[F(O, X, t)]

Let us present the above functions in the form
of series with respect to cos nax/l. This allows
the unknown coefficients a,(s) of the function
f(x,s) to be estimated by equating the coef-
ficients preceding cos knx/! both in the left- and
right-hand sides of the equation.

fx,s) = a;(s) + Z a,(s) cos kilx,

k=1

1
as) = %Jf (x, s) cos E’?—c dx.
(4]

Find the coefficients a¥(s) of the Fourier series
of the function f(I — x, s),

1]
2
a¥(s) = Tff(l — X,5) cosk—?fdx.
0
Supposing | — x = n we have

!
2 kn(l —
at() = Tff(n, ookl =g,
0

But

kn(l —
S—M = coskn.cos@

CO ] ]

k
— sinkn sin—nﬁ; cos km = (—1);

l
sinkn = 0.

Thus a¥(s) = (— 1)* a,(s). Using the inverse Lap-
lace transformation
ag+ico
o(t) = | Lfs)e*ds,

we find the coefficient a,(z), as well as G(0, x, t)
and G(l, x,t). If the pulse appears inside the
section [, then G({, x,t) can be found from
equation (17).
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Consider another way of obtaining G(¢&, x, t)

by means of the reflection theory method (see
paragraph 3). It is known that

and

4
. f arony
ot

are the reflections of the heat wave I'(¢, x,t)
(the first reflection) at the moment t at points
x = 0 and x = [, respectively.

Taking into account that complete reflection
occurs at the ends of the bar, we write G(&, x, t)
in the form of a finite series of successive
reflections.

t

GE.x.0) = TEx,0) — 2% J[ aOnY dn]

0 0

t =&

ar o, n,
x I'(0,x,t — t)dt — 2k[[j (6’?ﬂdﬂ]
o 0

t

4
7
xr(l,x,t—r)dt+2k2j ULF(OTT’U_)M]
0 0

[

or,n,0 — 1)
j[_[—T dn] I'(l,x,t — 0)do

t 0

1—

t 4
+ 2k2 jdr“ orQ.mz) dn]
dt
0

0

t !

oro,n,6 — 1)
JU‘ 20 d"]
(4]

T

x I'0,x,t —6)do — ... .

Since the convergence of the reflection series
is good, we may use only the first few terms of
the series.

E. V. TOLUBINSKIY

Let us prove the following theorem: if at
t >0, I' has continuous partial derivatives
entering the linear differential operator [P] and
obeys the equation [P][I'(Q, 2, t)] = 0, then at
t > 0, G which is determined from (7) also has
partial derivatives of the same order in D and
obeys the equation [P][G(Q, 2, t)] = 0. Prove
it to be valid, for example, for the case when P is
an operator allowing for the finite heat propaga-
tion velocity

12 1e 2 @ @
P=|lsG+— o - 23— 53 32| (18
¢c ot at ot Ox dy oz

[The Laplace operator 4 is estimated at the
point 2(x, y, z)]

It is not difficult to show that the integral
operator

00, P, 1) = g ¢ § { 40 M. 9

X Qp (M, 2, t - 1)dM

has a continuous action on continuous functions.
9 Q, 2, 0) = 0 when ¢,_,(Q, Z, 0) = 0. Let
Z# be an internal point of the region D, Q € S,
Q = N and ¢4(Q, Z,t) = I'(Q, 2, t); then

t
o (N, 2,0y = [ dr | | 4N, M, 1)
0 S

x I'(M,2,t — 1)dM.

The kernel g (N, M, t) is singular at = = 0 and
M = N, but

lim | dz | | qN, M, 1) dM
t—=0 0 N

is finite. It equals

1 —klim | { | (N, 2.0d2 = 4,

t—0 D
since
N — P
lim F(N. 2.1y = 2N — )
-0 k

But I'(M, 2, 0) = 0, thus ¢,(N, #, 0) = 0 and
also @,(N, 2, 0) = 0, 3(N, 2, 0) = 0, etc. If
Q is inside D, then the kernel g, is finite and the
proof of the above statement is trivial. The con-
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tinuity of the operator is due to the fact that at

T # 0, g(N, M, 1) is a continuous function of

M and 1.

Form the series
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and the absolute and uniform convergence of
the series composed of first derivatives is
established in the same way as was done above

D 60/Q. P, 1)
ot ’

a%(Q 2,1 _ g 2,1 6<p,,(Q 2,1

o’

JAJ q\v(QaM t) Py 1(1\4 .@ 0) dM

fdrij‘(Q,M 7) 2= LLALLRITE fdf'”qx(QM 7 20n 229

since ¢,_ (M, 2,0)=0, (n=1,2,3,...).

Therefore the series

ot

n=0

is formed by the successive application of the
above integral operator to the functions be-

{see paragraph 3). Hence at ¢ > 0, G(Q, #, t) has
a continuous first derivative with respect to
t which is equal to

i 00,0, 2.1)
ot '

n=0

Compose the series

2 2200, 2.1)
ot* ’

n=0

%@, (0, 2,1)
ot?

- J\J‘Q»(Q M.1). ¢,-,(M,2,0) dM +J ﬂ AQ, M, T
s 8 %

- ws st =
q)n l(iatzg}t T)dM

ginning with the continuous one {by condition)

ar(M, 2, 1)
ot

and is, therefore, an infinite series of continuous
functions. Since 2 is an internal point, then

oriM, 7, 1)

< <
Y 4, (©

t < o)

Here

¢ n— M, Pt
oM. 2.0y = LM 2.0

ot o
Let us show that I'(Q, #, 0) = 0 for all Z
except Z = Q.
r}(Qs 9, O) = }gg 5(%2’ r)

but I'(Q, 2, t) = 0 for all ¢ less than
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r = o)

C s
since thermal excitation which is propagating
at finite velocity ¢ has not yet achieved the point
. Therefore
I'M, 2,t)

lim —
t—=0 t

= 0.

t
¢1(N, 2, 0) = lim j de ” 4. (NM, 7)
0 N
or(M, 2,1t — 1)
ot

because I''(M, 2, 0) = 0 (NuM e S) (see above).
It is easy to prove that

92M, 2,0)=0,...¢,(M,2,0) =0
by this recurrent procedure. Thus

2 l ]
#0220 _ (4 {[aso.m0
0 S

dM =0

2 —_
% a (Pn—l(Adaat'?’t T) dM,

i.e. the series
o0

az(pn(Qa g’ t)
or?

n=0

is formed by successive application of the con-
tinuous operator to the continuous (by condi-
tion) function

0*r(M, 2, t)
ot?

and is an infinite series of continuous functions.

Since
*rM, 2,1
or?

the absolute and uniform convergence of the
series composed of second derivatives is estab-

A, 0 <t < o),

VAN
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lished as usual. Therefore, at t > 0, G(Q, #, t)
has a continuous second derivative with respect
tot,

0

P60, 2,1) _\ " P00 2. 1)
B ot?

n=0

Similarly one can prove the absolute and uni-
form convergence of the series

;0 A(pn(Q’ '@1 t)~

where A is the Laplace operator, and thus show
double differentiability of G(Q, 2, t) with respect
to the co-ordinates x, y, z.

Find [P]G(Q, 2, t) [see equation (18)].
According to what was proved above, the series
for G can be differentiated term-by-term as
many times as it is necessary.

[P16(Q.2.0 = ¥ [P19,@. 2.1
[PlooQ 2, 1) = [P]T(Q.2,1) =0
[P]lei(Q,2.1) = [P] idr jsj 4,0, M, 1)
x I(M.P,t —1)dM =
{ae {fato M ATPITOL 2.~ 0

according to the above proof. Thus

[P].(Q.2.1) = 0;
[PYos = {dt[a.[P1g,dS = 0.
etc. So each term of the series
3. 00 2.0

obeys the equation [ P] ¢, = Oand, consequently,
the sum of the series G(Q, 2, t) obeys the same
equation, too.

Further, it is easy to show that T(£, t) found
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from the expression

T2, 1) = i dt jsj qM, 1 )GM, ?,t — 1)dM

+jfjf 1G(Q, 2, 1) dQ

(see above) obeys not only initial and boundary
conditions, but also the new heat conduction
equation, if the latter is obeyed by G(Q, #, t).
In conclusion, let us solve the problem with
moving heat sources. In a half-plane the boun-
dary contour of which is in contact with radiat-
ing medium of steady temperature T, a linear
heat source is moving along some curve at the
velocity u(t). The power g of the source depends
on the co-ordinates x and y = f(x) of the curve.
The problem considers the ranges of those
temperature values when the reverse radiation
can be neglected. Otherwise we should deal
with non-linear boundary conditions. Initially,
the source was at the point x,, yo = f(x,). Let
us find at what time it will be at the point x;
y = f(x). Find the length of the curve from x, to

x;ds = J(dx* + dy?) = J[1 + f(x)*] dx;
s(x) = Tds = [ J[1 + f'(x)?*] dx;

on the other hand

s(r) = [ds = {v(n) dn
) 0
By equating both expressions one gets x(z).
The amount of heat generated by the source on
the elementary section ds in the vicinity of the
point £, which is inside the interval x,~x, is
equal to

gl& f(©)] ds = q[& fOTJ[1 + f1()?] de.

On applying the relation & &(r) we get
q[¢, f(&)] ds = F(z) dr. Now the definition of
T(#, t) by the principle of temperature fields
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superposition does not present any difficulties
since G(Q, £, t) is known

T 49 (T())
030 = (e & (Uey) = 11100

x [d | GOmixyit—mdy
0 -

+ 5 FOG{E(), f[ED]; x, ys t — 7} du.

Here &, and ¢, are the values describing the
emissivity of the surroundings and half-space.
The integral method allows the solution of
many unsteady-state heat- and mass-transfer
problems which can be described by any linear
differential or non-differential equations.
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Abstract—The paper offers a method of solving transient linear transfer problems on the assumption
that the solution of the Green function for an infinite space is known.

A study of different boundary value problems for a comprehensive class of regions is given; an integral
equation is constructed, the solution to which is the influence function for a given region at adiabatically
isolated boundary. In the paper it is shown that the constructed integral equation may be solved by the
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method of successive approximations and the rate of convergence is studied. Further, it is shown that the
terms of successive approximation series permit rather lucid and visual physical interpretation facilitating
the interpretation of the transfer process.

The construction of the influence function makes it possible to outline in general form the method of
solving the first boundary value problem. For this a new integral equation is constructed to find the heat
flux providing transfer process at the given boundary conditions, use being made of the influence function
for the given region. This integral equation may also be solved by the method of successive approxima-

tions which permits a rather clearer physical interpretation. '

Résumé—L article expose une méthode de résolution des problémes de transport linéaire transitoire, en
supposant que la solution du probléme du transport de quantité de mouvement est connue pour un espace
infini.

On a étudié différents problémes aux limites pour une classe étendue de régions. On a établi une équation
intégrale, dont la solution est la fonction d’influence pour une région donnée avec une frontiére isolée
thermiquement. On montre ici que I’équation intégrale obtenue peut étre résolue par approximations
successives et 1'on étudie la rapidité de la convergence. De plus, on montre que les termes de la série des
approximations successives permet une interprétation claire facilitant Pinterprétation du processus de
transport.

La construction de la fonction d’influence rend possible d’esquisser, d’une fagon générale, la méthode de
résolution du premier probléme aux limites. Pour ceci, une nouvelle équation intégrale est établie pour
obtenir le flux de chaleur pour les conditions aux limites données, en utilisant la fonction d’influence dans
la région donnée. Cette équation intégrale peut étre résolue également par approximations successives, ce

qui permet une interprétation physique plus claire.

Zusammenfassung—Es wird eine Methode angegeben, die eine Ldsung linearer, instationdrer Ubergangs-
probleme gestattet unter der Voraussetzung, dass die Losung der Bewegungsgleichung fiir einen unendlich
ausgedehnten Raum bekannt ist.

Fine Untersuchung verschiedener Grenzwertprobleme ist fiir eine grosse Zahl von Bereichen durchge-
fithrt; eine Integralgleichung, deren Losung die Einflussfunktion fiir einen gegebenen Bereich bei adiabat
isolierter Wand darstellt, wurde eingefilihrt. Es wird gezeigt, dass die eingefithrte Integralgleichung nach der
Methode der sukzessiven Approximation geldst werden kann. Die Konvergenzgeschwindigkeit wird
untersucht. Weiter ist gezeigt, dass die Ausdriicke der sukzessiven Néherungsreihe eine klare und anschau-
liche physikalische Interpretation erlauben, die eine Deutung der Ubergangsprozesse erleichtert.

Die Einfiihrung der Einflussfunktion ermdglicht es, die Losungsmethode fiir die erste Randbedingung in
allgemeiner Form zu umreissen. Dafiir ist eine neue Integralgleichung aufgestellt, um den Wirmestrom bei
gegebenen Randbedingungen zu erhalten. Diese Integralgleichung kann auch gelst werden nach der

Methode der sukzessiven Approximation. die auch ¢ine klarere physikalische Deutung erlaubt.



